Supplement

Table S1: List of antibodies used for the identification of the different cell types,all anti-mouse

Line	age Cockta	ail	Lung Lineage ⁺ Staining						
Epitope	Dilution	Manufacturer	Epitope	Dilution	Manufacturer				
B220 Biotin Clone: RA3-6B2	3,34µl/10 ⁷ cells	eBioscience	CD45 V500 Clone:30-F11	1:100	BD Horizon				
CD11b (Mac-1) Biotin Clone: m1/70	3,14µl/10 ⁷ cells	eBioscience	MHCII(I-A/I-E) Pe- eFluor610 Clone: M5/114.15.2	1:200	eBioscience				
Gr-1 Biotin Clone: RB6-8C5	2,86µl/10 ⁷ cells	eBioscience	Ly6G eFluor450 Clone: RB6-8C5	1:100	eBioscience				
CD8a Biotin Clone: 53-6.7	5µl/10 ⁷ cells	eBioscience	Ly6C APC-eFluor780 Clone: HK1.4	1:100	eBioscience				
CD5 Biotin Clone: 53->.3/3	5µl/10 ⁷ cells	eBioscience	CD24 PerCP/Cy5.5 Clone: M1/69	1:100	eBioscience				
Ter-119 Biotin	3,2µl/10 ⁷ cells	eBioscience	CD11c Pe-Cy7 Clone: N418	1:100	eBioscience				
			CD11b AF700 Clone: M1/70	1:200	eBioscience				
CD45 Biotin Clone: 30-F11	2,5µl/10 ⁷ cells	BioLegend	CD64 APC Clone: X54-5/7.1	1:100	BioLegend				
CD31 Biotin Clone: 390	5µl/10 ⁷ cells	Biolegend							
M	SC Staining		EPC and	HSPC Stair	ning				
Epitope	Dilution	Manufacturer	Epitope	Dilution	Manufacturer				
Streptavidin eFluor450	1:100	eBioscience	Streptavidin eFluor450	1:100	eBioscience				
CD90.2 AF700 Clone: 30-H12	1:75	BioLegend	CD45 V500 Clone:30- F11	1:100	BD Horizon				
CD105 APC Clone: MJ7/18	1:75	BioLegend	Ly-6A/E (Sca-1) Pe- Cy7 Clone: D7	1:200	eBioscience				
Ly-6A/E (Sca-1) APC-Cy7 Clone: D7	1:200	BioLegend	CD31 FITC Clone: 390	1:50	BDPharmingen				
CD51 Pe Clone: RMV-7	1:100	BioLegend	CD34 eFluor660 Clone: RAM 34	1:50	eBioscience				
CD44 Pe-Cy7 Clone: IM7	1:100	BioLegend	CD309 (Flk-1) PerCP/Cy5.5 Clone: 89B3A5	1:100	BioLegend				
CD29 FITC Clone: HMß-1	1:100	BioLegend							
Fibroblast/M	yofibrobla	st staining	AnnexinV	and PI Sta	ining				
Epitope	Dilution	Manufacturer	Epitope	Dilution	Manufacturer				
Ly-6A/E (Sca-1) Pe- Cy7 Clone: D7	1:100	eBioscience	PI (Propidium iodide)	1:20	Sigma-Aldrich				
CD49e FITC Clone: 5H10-27(MFR5)	1:50	BioLegend	Fixable Viability Dye eFluor780	1:1000	eBioscience				
CD45 Biotin Clone: 30-F11	2,5µl/10 ⁷ cells	BioLegend	Annexin V	1:50	BioLegend				
CD31 Biotin Clone: 390	5µl/10 ⁷ cells	BioLegend							
LYVE1 Biotin Clone: ALY7	1:400	eBioscience							
Ter-119 Biotin	3,2μl/10 ⁷ cells	eBioscience							
CD326 (Ep-CAM) Biotin Clone: G8.8	1:200	BioLegend							
CD146 Biotin Clone: ME-9E1	1:200	BioLegend							

Streptavidin eFluor450

1:100

eBioscience

Figure S1a: Gating strategy of inflammatory cells in lung tissue. Established and verified in lung tissue by Yu et al. (2016) Table below summarizes the used surface markers for the identification of the inflammatory cells.

Yu Y-RA, O'Koren EG, Hotten DF, Kan MJ, Kopin D, Nelson ER, et al. A Protocol for the Comprehensive Flow Cytometric Analysis of Immune Cells in Normal and Inflamed Murine Non-Lymphoid Tissues. PLoS ONE. 2016;11(3):e0150606.

а

	Negative Marker	Positive Marker
Late Progenitors	PI, Lineage Cocktail	C-Kit
Early Progenitors	PI, Lineage Cocktail	Sca-1, c-Kit, CD34
HSCs	PI, Lineage Cocktail, CD34	Sca-1, c-Kit

Figure S1b: Gating strategy of HSPCs a Representative gating in bone marrow (used as reference, right panel), PB (middle panel) and lung tissue (right panel). Marker panel is given below. b Size gate for the early progenitor and HSC population in lung at the level of forward and side scatter to remove false positive cells, BM gate was used for orientation.

Figure S1c: Gating strategy of EPCs and endothelial potential confirmation. a Gating for EPCs in BM (left panel), PB (middle panel) and lung tissue (right panel), marker for the identification are listed below. **b** To confirm endothelial potential EPC-CFU Assay was performed (Asahara et al., 1997). 500 BM-derived EPC were incubated in MethoCult plus cytokines at 37°C. An endothelial colony is shown at different time points, confirming existing potential.

Asahara, T., Murohara, T., Sullivan, A., Silver, M., van der Zee, R., Li, T., Witzenbichler, B., Schatteman, G., and Isner, J.M. (1997). Isolation of putative progenitor endothelial cells for angiogenesis. Science *275*, 964–967.

Figure S1d: Gating strategy of different MSC populations. On the left side a typical flow plot for BM is illustrate on the right for PB. The marker panel below informs on used surface markers.

Table S2: Correlation of the fold change from the different cell populations after TXT induction within a tissue **a** PB **b** lung tissue **c** Correlation of the fold change from the different cell populations after TXT induction between PB and the lung tissue.

Correlations with a Spearman's r (r-value) > 0.5 and a p-value < 0.05 are highlighted in red.

а

	Ea	rly	La	te														
	Proge	nitors	proge	nitors	EP	EPCs MSC1 MSC2 MSC3		Monocytes		Lymphocytes		Neutrophils						
	r-	p-	r -	p-	r-	p-	r -	p-	r -	p-	r -	p-	r-	p-	r -	p-	r -	p-
PB	value	value	value	value	value	value	value	value	value	value	value	value	value	value	value	value	value	value
HSCs	0.65	0.00	0.60	0.00	0.36	0.01	0.22	0.09	0.13	0.24	0.33	0.03	0.01	0.48	0.01	0.48	0.11	0.25
Early																		
Progenitors			0.61	0.00	0.35	0.01	0.13	0.21	0.29	0.06	0.28	0.06	0.08	0.31	0.02	0.44	0.06	0.35
Late																		
progenitors					0.49	0.00	0.10	0.27	0.43	0.01	0.34	0.03	-0.30	0.03	0.04	0.40	0.15	0.18
EPCs							0.17	0.15	0.20	0.15	0.22	0.11	-0.34	0.01	0.16	0.15	0.27	0.05
MSC1									0.30	0.05	0.52	0.00	0.30	0.03	0.39	0.01	0.42	0.00
MSC2											0.40	0.02	-0.21	0.12	0.13	0.25	0.01	0.49
MSC3													-0.03	0.44	0.14	0.23	0.21	0.13
Monocytes															0.49	0.00	0.11	0.24
Lymphocytes																	0.51	0.00

b

	Ear Proger	ly hitors	Lat progen	e itors	EPC	s	Monoo	cytes Lymphocy		ocytes	s Neutrophils	
	r-	p-		p-		p-	r- p-		r-	p-	r -	р-
Lung	value	value	r - value	value	r - value	value	value	value	value	value	value	value
HSCs	0.53	0.00	0.36	0.01	0.29	0.03	0.02	0.46	-0.05	0.39	0.10	0.28
Early												
Progenitors			0.38	0.01	0.36	0.01	0.04	0.41	0.20	0.12	0.26	0.06
Late												
progenitors					0.08	0.3	0.19	0.13	0.32	0.03	0.37	0.01
EPCs							0.26	0.06	0.00	0.49	0.00	0.49
Monocytes									0.61	0.00	0.39	0.01
Lymphocytes											0.34	0.02

С

PB	Lung						
	Spearman's r	p-value					
HSC	0.1392	0.1927					
Early Progenitors	0.2472	0.0572					
Late Progenitors	-0.03022	0.4247					
EPCs	-0.09586	0.273					
Monocytes	0.2739	0.0556					
Lymphocytes	0.09112	0.2986					
Neutrophils	0.01485	0.4663					