ARTICLE REFERENCES	OBJECTIVES	OUTCOME MEASURES	MAIN FINDINGS
Abelson et al., 2015 ⁽⁴⁰⁾	 Determine feasability of creating a VR operating room Evaluate simulator for face and construct validity 	 Construct validity : metric data Face validity : Likert-scale questionnaires (realism, inclination to use), Bedford Workload Scale and modified NASA-Task Load Index scale 	 Training environment evaluated as realistic 82% of participants felt low workload or had enough spare capacity for additional tasks. All participants had minimal mental, physical, and temporal demand and none reported requiring a high amount of effort to complete the simulation No statistically significant difference between attendings and trainees for all responses
Brewin et al., 2015 ⁽²⁴⁾	 Assess validity of distributed simulation environment for NTS training Evaluate educational impact 	 Face, content and construct validity : questionnaires NOTECHS Educational impact : questionnaires completed after the simulations 	 Good learning environment for NTS, judged realistic NTS of experienced urologists significantly better than trainees establishing construct validity All trainees felt more confident Kirkpatrick level 1 evidence and indirect evidence of learning (Kirkpatrick level 2)
Brunckhorst et al., 2015 ⁽²⁵⁾	 Evaluate feasibility, acceptability, content validity and educational impact of simulation-based curriculum integrating NTS 	 NOTSS Content validity : post-study questionnaire 	 100 % of experts agreed integration of full immersion simulation was a useful tool for teaching non-technical skills Curriculum-trained group : significantly higher NOTSS scores than control group Feasibility of delivery of the curriculum was rated 9.27/10, enjoyment and productivity was scored at 9/10, difficulty of curriculum rated 4.93/10
Cohen et al., 2013 ⁽⁴¹⁾	 Determine feasability and reliability of skills assessment 	• 7-point NTS competency scale for paramedics and T-NOTECHS (Trauma Non-Technical Skills Scale)	 Significant and strong correlations between expert assessors suggest reliability to carry out NTS assessments in virtual environments in major incident scenarios No significant correlations between expert and self-assessment for NTS
Creutzfeldt et al., 2010 ⁽²⁶⁾	 Evaluate (SA) Situation Awareness self assessment instrument Analyze SA training in virtual settings 	 SA: 9-items questionnaire trainee's own opinion of his or her SA during training Concentration/attention : 10-items instrument 	 SA increased from the first to the last scenario Perception of SA corresponded to calculated SA Correlation between SA and concentration
Dorozhkin et al., 2016 ⁽⁴²⁾	• Establish face validity, usefulness and fidelity of virtual OR fire	 Perceived usefulness and face validity : questionnaire Open-ended questions : improvements and 	 Face validity established with high degree of satisfaction and usefelness 33/49 participants preferred this modality of training over a traditional one 47% of subjects offered suggestions on how to make the simulator look and feel more realistic

	training module in VEST simulator	preferences	
Greci et al., 2013 ⁽²⁷⁾	 Develop and evaluate a virtual learning curriculum 	Open-ended questions : technical challenges, course content, immersion Interviews and focus groups	 All students improved postcourse disaster preparedness knowledge scores Emerging themes : team communication, team planning, team decision making Functioning in an unfamiliar environment was evaluated as requiring similar skills as during a disaster where rapid decision making with incomplete information
Grover et al., 2015 ⁽²⁸⁾	 Validate a simulation-based curriculum for cognitive and integrative competencies 	Globalperformance :IntegratedScenarioGlobalRating Form (ISGRF)Communicationskills :CommunicationGlobalRating Scale (CGRS)	• Participants significantly outperformed control group with respect to colonoscopy-specific performance, communication skills and global performance during the integrated scenario format assessment 4 to 6 weeks after training
Heinrichs et al., 2010 ⁽⁴³⁾	• Determine efficiency of a Virtual Emergency Department to train mass-casaulty incidents (team skills)	Immersion, level of comfort, confidence, usefulness for clinical skills and team training : questionnaire Focus group	 68% of the participants felt immersed Everyone felt they learned how to interact in the simulation "Useful", "Very Useful", or "Extremely Useful" for clinical skills training for 82% participants Participants gained confidence in ability to handle incidents
Hudson et al. , 2015 ⁽⁴⁴⁾	 Examine perceived usability of Second Life (SL) as an immersive virtual environment Study clinical decisions 	Perceived usability : System Usability Scale (SUS) Situation awareness : questionnaire with 27 items	 SL considered usable in providing practice with complex scenarios of insulin administration. Perceived usability decreased among experienced nurses No significant association between years of nursing experience and SA scores was found.
Khan et al., 2017 ⁽²⁹⁾	 Evaluate effectiveness of a simulation-based training curriculum of NTS on novice endoscopists' performance of clinical colonoscopy. 	ModifiedObjectiveStructured Assessment NTS(M-OSANTS)ISGRFIntegratedScenarioCommunicationRatingForm (ISCRF)General Self Efficacy Scale(GSE)	• To inform the potential implementation of NTS into postgraduate gastrointestinal curricula, non-technical performance will be determined by comparing the scores from the M-OSANTS, ISGRF, ISCRF and GSE for both conditions and at 3 different times

Khanal et al., 2014 ⁽³⁰⁾	• Evaluate efficacy of delivering advanced cardiac life support (ACLS) using a virtual reality simulator	 Team performance : electronic checklist based on ACSL guidelines assessed by experts Final questionnaire on training experience 	 No statistically significant difference in improvement of skills between groups VR-based ACLS training simulator is significantly cheaper, easier to organize, and facilitates users to practice in a team from disparate locations without requiring an evaluator
King et al., 2012 ⁽⁴⁵⁾	 Evaluate usability of the environment Evaluate learning effectiveness of scenarios Evaluate integration into curriculum 	 Debriefing: exploration of team interactions Satisfaction survey and questions on learning in the environment 	 Students appreciated to visualize the Emergency Room setting in a low-pressure situation It provided students with opportunities to communicate with other disciplines, which they would not have had until in clinical practice Students felt it was great preparation for non-virtual scenarios for clinical situations
Maschuw et al., 2008 ⁽³¹⁾	• Explore impact of self-belief of surgeons on laparoscopic performance using a VR simulator	• General Self Efficacy (GSE) score Technical metrics : time, economy of motion and damage parameters	 No significant differences were found in gender or in GSE score between both groups Motions of advanced trainees were more economic than novices, but no significant difference in time, error score and right instrument movements. Novices GSE scores negatively correlates with economy of motion and time, while for advanced residents it is independent of laparoscopic performance
Paige et al., 2007 ⁽⁴⁶⁾	 Evaluate perception of simulated scenarios Evaluate effectiveness for communication and teamwork during OR crisis 	 Teamwork assessment: communication, coordination and situational awareness Questionnaire on perception of training effectiveness and specific attributes of teamwork 	• Sessions were found effective/very effective for improving teamwork, communication and recognizing problems in the OR
Riesen et al., 2012 ⁽³²⁾	 Improve interprofessional competencies Determine acceptability of a blended learning environment 	 Self-perceived changes in interprofessional attitudes and competence : IEPS, ICCAS Team performance assessment : TOSCE Students perceptions : program assessment tool, and 16-item questionnaire 	 Significant differences pre and post workshop were found in ICCAS and IEPS scores Significant improvement accross the 3 simulations in all competencies Program and learning experience were highly rated Learner confidence and performance can be improved through education delivered in a virtual environment
Rogers, 2011 ⁽⁴⁹⁾	• Investigate how a simulation in Second	• Individual interviews: clinical judgement,	• Critical Life simulation is an artificial social structure where problem-based scenarios can be created

	Life can encourage teamwork and collaborative problem solving	teamwork and interpersonal skills	 Students can co-construct mental models expericencing human interaction in problematic environment Critical Life could develop cognitive understanding of team-orientated procedural and problem-based decision-making skills.
Rudarakanchana et al., 2014 ⁽³³⁾	 Evaluate feasability of integration of a VR simulator in an immersive simulation Investigate construct and face validity for training human factor skills during a crisis scenario 	• Questionnaires : realism (face validity) and potential for use in team training for both technical and human factor skills	 Experienced team leaders were significantly faster than trainees Realism of the environment was scored very high and realism of the VR simulator was rated high Trainees rated the simulation more useful for technical skills training, and experts believed it more useful in enhancing communication skills Feasability, face and construct validity of a realistic crisis scenario integrating a VR simulator has been shown
Sankaranarayana n et al., 2016 ⁽³⁴⁾	 Establish face and construct validity of an immersive VR system Assess the effects of distractions and task interruptions 	• 5-point Likert-scale subjective feedback questionnaire : realism, immersive experience, and effects of distractions and interruptions	 Performance decreased with added distractions and interruptions Subjects rated interruptions very high in their ablity to affect performance and music distraction received the lowest mean rating Simulators rated as realistic to present distractions and interruptions in a simulated OR, immersion evaluated as intermediate.
Shamim Khan et al., 2013 ⁽³⁵⁾	• Establish feasability and acceptability of simulation training for NTS	 Interviews : perception of simulated environment Feasability, acceptability and construct validity : questionnaires 	 Construct-validity established : Seniors performed significantly better than junior trainees in all simulation sessions Increased cognitive load for trainees on VR simulator : pressure/anxiety about the unknown and interplay between technical and non-technical skills
Sweigart et al., 2016 ⁽³⁶⁾	 Test utility and acceptability of a virtual learning environment (VLE) Examine change in teamwork attitudes in interprofessional communication 	 Effectiveness : TeamSTEPPS -TAQ (Teamwork Attitude Questionnaire) Utility : Time to complete scenarios and answers to questions within scenarios Acceptability : Likert-scale type questions 	 Positive student feedback on ease of use and perceived effectiveness for teaching communication and professionalism t Scores on the T-TAQ revealed significant positive changes in leadership, situation monitoring, mutual support, and communication
Umoren et al., 2017 ⁽⁴⁸⁾	Propose an introduction to TeamSTEPPS	• MCQ questions during the progression of the scenarios : designation of a	 Learner recognition of the SBAR communication tool was high accross groups Knowledge of which component of SBAR was missing was lower accross

	communication tools for nursing and medical students	TeamSTEPPS strategy, identification of a missing component of this strategy and possible selection of another strategy	 groups Students demonstrated increased correct recognition of strategies as they progressed through the scenarios When they had the choice, students were more likely to chose the Two-Challenge Rule than the CUS
White et al., 2015 ⁽⁴⁷⁾	 Study quality of information transfer and teamwork during a simulated critical event Assess gathering and sharing of critical information 	Communication skills: Critical Patient Information checklist and Interprofessional Communication Skills checklist	 A substantial percentage of participants did not share 3 critical items and 87% of the participants missed a dosage error Items on Communication Checklist were missed by a substantial number of participants (introduction of self and task, closed-loop communication) No statistically significant relationship between scores and years of nursing
Willaert et al., 2011 ⁽³⁷⁾	• Evaluate whether a part-task rehearsal of a surgical procedure on a VR simulator is as effective as a full-task one	 Non-technical skills : NOTSS Face validity and usefulness : questionnaire Emotional, cognitive and physical stress : short version of State Trait Anxiety Inventory (STAI) questionnaire 	 Both groups scored acceptable scores in all categories of NOTSS Simulated procedure was found highly realistic. Simulation helped participants in decision-making, confidence, reduction of anxiety, and communication. Both strategies were as effective on stress levels For a moderately difficult case, a part-task patient specific VR rehearsal is as effective as a full-task one
Wucherer et al., 2015 ⁽³⁸⁾	 Measure usability of simulator Explore relationship between mental workload and surgical performance during crisis 	 Cognitive workload : 3-item questionnaire and Surgery Task Load Index (SURG- TLX) Questionnaire : face validity and training value 	 Training resulted in a decrease of time, but significantly slower performances when crises The more workload was experienced, the poorer was the surgical performance. Telephone call seemed more disturbing compared to patient discomfort
Youngblood et al., 2008 ⁽³⁹⁾	• Evaluate VLE for leadership and trauma management by comparing users' experience with a high-fidelity patient simulator (PS)	 Leaderdhip skills : EMCRM (Emergency Medicine Crisis Resource Management) scale Assessment of learning experience : debriefing and questionnaire 	 All participants evaluated simulation as "useful" or "very useful" to assess and manage trauma patients in Emergency Department (ED) All participants showed significant improvement in team leadership Students emphasized emotional impact of simulation in VLE Both mannequin-based and VLE simulation of ED cases are valid training methods to improve EMCRM team leadership skills