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SDC, Materials and Methods  

 

Immunoblotting  

Selected proteins implicated by proteomic analysis of the 10-sample subset were analysed 

in the remaining 28 samples by immunoblotting. Samples containing 15 µg of protein were 

denatured at 95°C for 5 minutes in Laemmli buffer and loaded into 8–12% precast SDSPAGE 

gels (Bio-Rad, USA). Proteins separated by SDS-PAGE were transferred to hydrophobic PVDF 

membranes (Merck Millipore, USA) in transfer buffer (25 mM Tris, 192 mM glycine and 10% 

methanol) overnight. PVDF membranes were blocked for 1 hour in TBST buffer (25 mM Tris, 

pH 7.5, 0.15 M NaCl, 0.05% Tween 20) containing 5% milk. Membranes were incubated for 

overnight at 4 °C with anti TRX1 (ab26320, 1:1000), PRX3 (ab73349, 1:1000), Catalase 

(ab16731, 1:1000), GST (ab53940, 1:3000) (Abcam, UK), STAT-1 (mab14901, 1:1000), 

PDGFRα (af307na, 1:800) (R&D Systems, US). Rabbit monoclonal anti Beta-actin served as a 

loading control (ab8227, 1:5000) (Abcam, UK). Membranes were washed for 30 minutes 

with 5 changes of wash buffer and then incubated at room temperature for 1 hour in 

blocking buffer containing a 1:5000 dilution of Dye-800-conjugated anti-mouse, rabbit, or -

goat secondary antibody (Li-Cor, Nebraska, USA), and visualization was performed with 

Odyssey CLx (Li-Cor Nebraska, USA). Detected signal was quantified and normalized to β-

actin on the same blot.  
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Table S1: Remuzzi scoring  

                                   Suboptimal Outcome (n=19)         Good Outcome (n=19)         P Value  
Remuzzi score (%)                            0.1    

 0- 3                13 (68)               15 (79)        
 4-8                 1 (5)                 1 (5)        
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Figure S1  
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Figure S1. Experimental design   

1A. The kidney biopsy sample selection diagram shows the selection of donors included in 

the study. Selected donors offered both kidneys as single transplants with both allografts 

giving rise to similar outcome suboptimal or good allogarfat function. GO donor kidneys had 

a mean 3-month eGFR= 65.2 +/- 8 ml/min/1.73 m2 (25th and 75th percentiles for eGFR were 

62 and 70.25 ml/min/1.73 m2 respectively). SO donor kidneys had a mean 3-month eGFR= 

29.8+/-7ml/min/1.73 m2 (25th and 75th percentiles for eGFR were 37.2 and 24.8 ml/min/1.73 

m2 respectively). The difference of the posttransplant 3-month eGFR values between the 2 

cohorts (SO vs GO) was significant different (P<0.0001; Mann-Whitney test).    

1B. The experimental workflow contained 2 stages. (1) Initially, n=10 individual kidney 

biopsies (n=5 samples per transplantation outcome) were analysed by label-free 

quantitative MS. Biopsy sample homogenates were precipitated, proteins were 

enzymatically digested to tryptic peptides and analysed by tandem mass spectrometry. 

Bioinformatic analysis resulted in the identification of 1743 proteins (FDR<1%). (2). Western 

blot analysis was performed on the rest of the selected cohort of DBD kidney biopsies n=28 

(n=14 biopsy samples per transplantation outcome). SO: suboptimal outcome, GO: good 

outcome.  
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 Figure S2 

 

Figure S2. STAT-1 and PDGFRα are enriched in donor kidneys with SO.   

Western blot analysis of STAT-1 (A) and PDGF Rα (B) on the rest of the selected cohort of n= 

28 biopsy samples (n=14 suboptimal and n=14 good outcome cohort). Normalised by β-

actin, densitometry analysis shows significant increased levels of STAT-1 and PDGFRα in SO 

associated donor kidney biopises (p≤0.05).  
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Figure S3  

   

Figure S3. Antioxidant proteins are enriched in the donor kidneys with GO.  

Western blot analysis of GST (A), TRX1 (B), PRX3 (C) and CAT (D) on the rest of the selected 

cohort of n=28 DBD kidney biopsies (n=14 suboptimal and n=14 good outcome cohort).  
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Normalised by β-actin densidometric analysis shows significant increased levels of TRX1, 

GST, and PRX3  in GO associated donor kidney biopises (p≤0.05). CAT was not significantly 

altered.  
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Figure S4  

 

Figure S4. Correlation of Serum Creatinine versus 12-month eGFR  

A (nonstratified) comparison between donor serum creatinine and 12-mo eGFR did not find a strong 

correlation (Spearman Rho=-0.007; p<=0.65); plotting the data reveals that the observed mean 

difference is likely due to a few anomalous readings. 
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