The magnitude and functionality of SARS-CoV-2 reactive cellular and humoral immunity in transplant population is similar to the general population despite immunosuppression

Constantin J. Thieme¹, MD; Moritz Anft², PhD; Krystallenia Paniskaki³, MD; Arturo Blazquez-Navarro^{1,2}, PhD; Adrian Doevelaar², MD; Felix S. Seibert², MD; Bodo Hoelzer², MD; Margarethe Justine Konik³, MD; Toni L. Meister³, MD; Stephanie Pfaender³, PhD; Eike Steinmann³, PhD; Marc Moritz Berger⁴, MD; Thorsten Brenner⁴, Uwe Kölsch⁵, MD; Sebastian Dolff³, MD; Toralf Roch^{1,2}, PhD; Oliver Witzke³, MD; Peter Schenker⁶, MD; Richard Viebahn⁶, MD; Ulrik Stervbo², PhD; Timm H. Westhoff², MD; Nina Babel^{1,2*}, MD

¹ Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, and Institute of Medical Immunology, Germany

² Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Germany

³ Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Germany

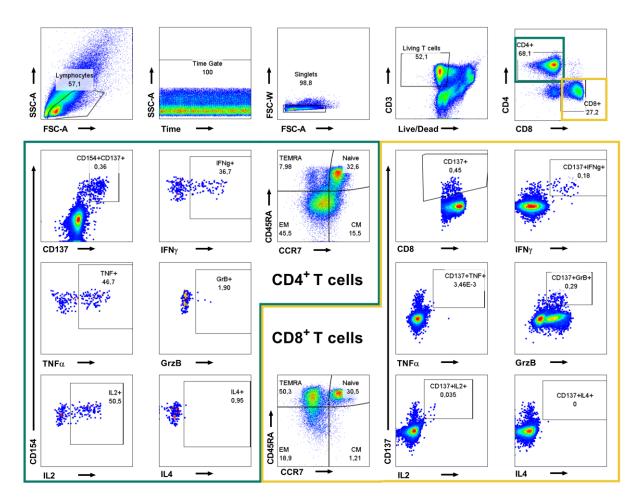
⁴ Department of Anesthesiology, University Hospital Essen, University Duisburg-Essen, Germany ⁵ Department of Immunology, Labor Berlin GmbH, Berlin, Germany

⁵ Department of Immunology, Labor Berlin GmbH, Berlin, Germany

⁶Ruhr-University Bochum, University Hospital Knappschaftskrankenhaus Bochum, Department of Surgery, Bochum, Germany

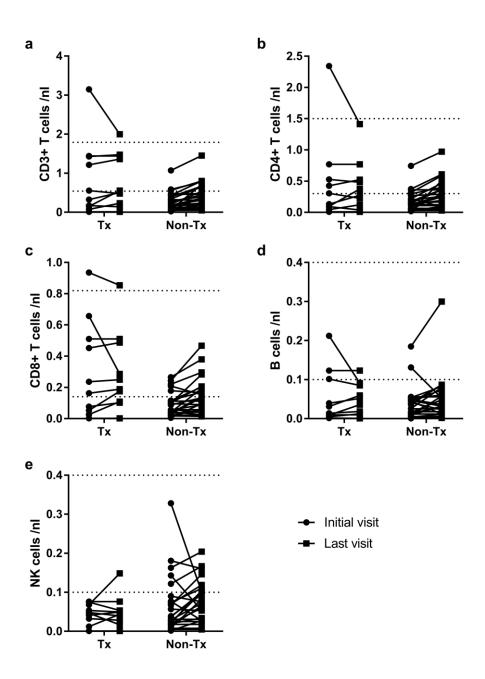
*Correspondence: nina.babel@charite.de

Supplementary Tables


Table S1: Fluorochrome coupled antibodies and fluorescent dye for analysis of SARS-CoV-2 reactive T cells

Antibodies or fluorescent dye	Fluorochrome	Source	Identifier
Fixable Viability-Dye	eFluor780	eBioscience	Cat#: 65-0865-14
anti CCR7 (clone G043H7)	PerCP-Cy5.5	BioLegend	Cat#: 353220, RRID: AB_10916121
anti CD4 (clone OKT4)	A700	BioLegend	Cat#: 317426, RRID: AB_571943
anti CD8 (clone RPA-T8)	V500	BD Biosciences	Cat#: 560775, RRID: n/a
anti CD45RA (clone HI100)	BV605	BioLegend	Cat#: 304134, RRID: AB_2563814
anti Granzyme B (clone GB11)	FITC	BioLegend	Cat#: 515403, RRID: AB_2114575
anti IL2 (clone MQ1-17H12)	PE	BioLegend	Cat#: 500307, RRID: AB_315094
anti IL4 (clone MP4-25D2)	PE-Dazzle594	BioLegend	Cat#: 500832, RRID: AB_2564036
anti CD137 (4-1BB) (clone 4B4-1)	PE-Cy7	BioLegend	Cat#: 309818, RRID: AB_2207741
anti CD154 (CD40L) (clone 24-31)	A647	BioLegend	Cat#: 310818, RRID: AB_492970
anti TNFα (clone MAb11)	eFluor450	eBioscience	Cat#: 48-7349-42, RRID: AB_2043889
anti IFNγ (clone 4S.B3)	BV650	BioLegend	Cat#: 502538, RRID: AB_2563608
anti CD3 (clone OKT3)	BV785	BioLegend	Cat#: 317330, RRID: AB_2563507

Table S2: Clinical characteristics, COVID-19 treatment, and monitoring strategy of transplant (Tx) patients and non-Tx-patients


Variable	Тх	Non-Tx	P-value	
No. patients (%)	10 (27.8%)	26 (72.2%)	-	
Demographic characteristics				
Gender, male/female (%)	6/4 (60.0%/40.0%)	16/10 (61.5%/38.5%)	ns	
Age (years), median [IQR]	55 [41-61]	69 [58-82]	0.006	
Initial COVID-19 severity				
Moderate	8 (80.0%)	10 (38.0%)	ns	
Severe	1 (10.0%)	7 (27.0%)		
Critical	1 (10.0%)	9 (35.0%)		
Maximal COVID-19 severity in follow up	•			
Moderate	7 (70.0%)	6 (23.1%)		
Severe	1 (10.0%)	10 (38.5%)	0.043	
Critical	2 (20.0%)	10 (38.5%)		
Monitoring scheme				
First measurement (days after first positive PCR), median [IQR]	4 [2-6]	3 [1-9]	ns	
No. measurements per patient, median [IQR]	3 [2-3]	2 [2-3]	ns	
Mean time of follow-up measurements (days after first positive PCR), median [IQR]	9 [8-10]	11 [5-23]	ns	
Chest CT abnormalities	·	·		
Bilateral ground-glass opacity (%)	3 (30.0%)	5 (19.2%)	ns	
Acute respiratory distress syndrome (%)	1 (10.0%)	10 (38.5%)	ns	
Treatments	·	·		
Antibiotics (%)	6 (60.0%)	23 (88.5%)	ns	
Anticoagulants (%)	9 (90.0%)	11 (42.3%)	0.022	
Remdesivir (%)	1 (10.0%)	0 (0.0%)	ns	
Plasma therapy (%)	2 (20.0%)	0 (0.0%)	ns	
Admission to intensive care unit (%)	2 (20.0%)	11 (42.3%)	ns	
Mechanical ventilation (%)	1 (10.0%)	10 (38.5%)	ns	

Supplementary Figures

Figure S1: Flow cytometry gating strategy for identification and quantification of SARS-CoV-2reactive CD4+ and CD8+ T cells.

PBMC were stimulated for 16h with SARS-CoV-2 overlapping peptide pools. After 2h Brefeldin A was added to the culture to block secretion of cytokines and effector molecules. Living single lymphocytes were analyzed for expression of CD3, CD4, and CD8. CD4⁺ T cells (green box) were analyzed for the expression of CD154 and CD137. CD8⁺ T cells (yellow box) were analyzed for expression of CD137. Both CD4⁺ and CD8⁺ T cells were further analyzed for the production of cytokines interferon γ (IFN γ), tumor necrosis factor α (TNF α), interleukin (IL)-2, IL4, and effector molecule granzyme B (GrB). Memory phenotypes were characterized by expression of C-C chemokine receptor type 7 (CCR7) and CD45-RA. Plots show pseudocolor plots. For better visibility SARS-CoV-2 specific T cells are shown as large dots. Representative example of 10 transplant and 26 non-transplant COVID-19 patients.

Figure S2: Absolute counts of lymphocyte subsets in transplanted (Tx) and non-Tx COVID-19 patients

EDTA-treated blood samples of Tx- (n=10) and Non-Tx- (n=26) COVID-19 patients were collected at the study inclusion and in follow-up. Absolute counts are expressed as cells per nanoliter (nl) of CD3⁺ (T cells) (a), CD4⁺ CD3⁺ (b), CD8⁺ CD3⁺ (c), CD19⁺ CD3⁻ (B cells) (d), and CD56⁺ CD3⁻ (NK cells) (e) SSC^{low} CD45⁺ lymphocytes. Normal distribution was assessed using D'Agostino-Pearson-omnibus-normality-test. Statistical comparison between Tx- and Non-Tx-patient samples was done with Mann-Whitney-U-test. Dotted lines represent minimum and maximum reference values.

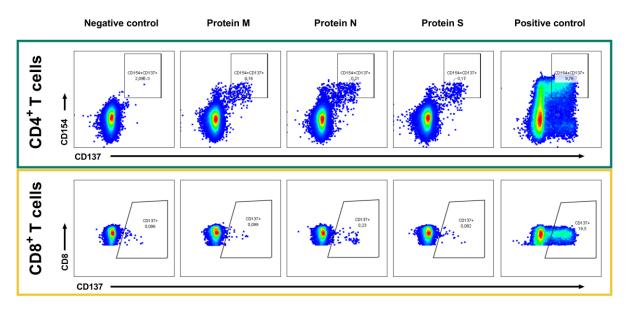
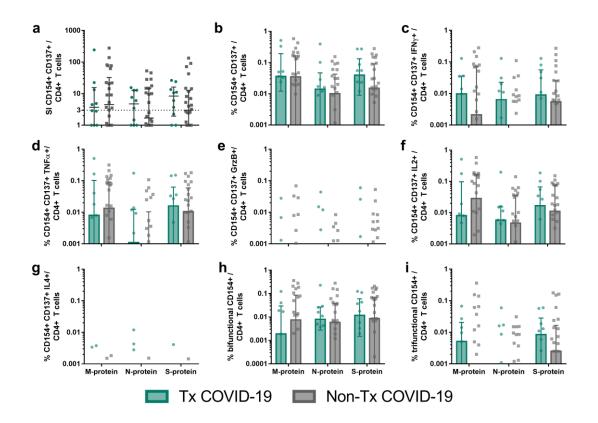
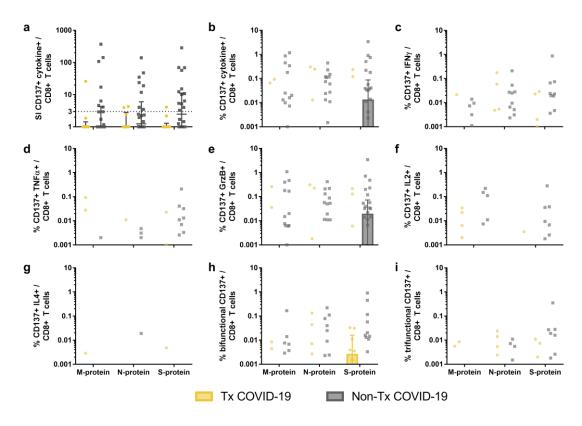



Figure S3: Activation marker expression of T cells stimulated with SARS-CoV-2 peptide pools and controls.

PBMC were stimulated for 16h with SARS-CoV-2 M-, N-, or S-protein overlapping peptide pools or left untreated (negative control) or stimulated with staphylococcal enterotoxin B (positive control). After 2h Brefeldin A was added to the culture to block secretion of cytokines and effector molecules. CD4⁺ T cells (green box) were analyzed for the expression of activation markers CD154 and CD137. CD8⁺ T cells (yellow box) were analyzed for expression of CD137. Plots show pseudocolor plots with large dots. Representative example of 10 transplant and 26 non-transplant COVID-19 patients.


Figure S4: Characterization of SARS-CoV-2-reactive CD4⁺ T cells in transplant and non-transplant COVID-19 patients early after COVID-19 diagnosis.

Blood samples of 10 transplant (Tx) patients and 26 control (non-Tx) patients suffering from acute COVID-19 were collected early after COVID-19 diagnosis and stimulated with SARS-CoV-2 membrane (M)-, nucleocapsid (N)-, and spike (S)-protein and analyzed by flow cytometry. In one Tx-patient, only N- and S-protein reactive T cells could be analyzed due to the limited amount of collected blood and lymphopenia.

a Stimulation index (SI) of activation markers CD154 and CD137 expressing CD4⁺ T cells (SARS-CoV-2 specific CD4⁺ T cells). SI was calculated by dividing the measured T cell subset response by the respective response in the negative control. Values above 3 are considered above detection limit. For patients with multiple samples, the maximal response was calculated. Scatter plot with line at median and interquartile range.

b-i Frequencies of SARS-CoV-2 specific CD4⁺ T cells (**b**) and SARS-CoV-2 specific CD4⁺ T cells expressing IFN γ (**c**), TNF α (**d**), GrzB (**e**), IL2 (**f**), or IL4 (**g**) as well as bifunctional (**h**) and trifunctional (**i**) CD154⁺ CD4⁺ T cells. Bi- and trifunctional T cells were calculated by Boolean gating of production of IFN γ , TNF α , GrzB, IL2, and IL4. Negative controls were subtracted from specifically stimulated samples to exclude unspecific activation.

Statistical comparison was done with Mann-Whitney-U-test and controlled by multivariate analysis for the influence of transplantation status and age. P<0.05 was considered significant.

Figure S5: Characterization of SARS-CoV-2-reactive CD8⁺ T cells in transplant and non-transplant COVID-19 patients early after COVID-19 diagnosis.

Blood samples of 10 transplant (Tx) patients and 26 control (non-Tx) patients suffering from acute COVID-19 were collected early after COVID-19 diagnosis and stimulated with SARS-CoV-2 membrane (M)-, nucleocapsid (N)-, and spike (S)-protein and analyzed by flow cytometry. In one Tx-patient, only N- and S-protein reactive T cells could be analyzed due to the limited amount of collected blood and lymphopenia.

a Stimulation index (SI) of activation marker CD137 and at least one of the cytokines IFN γ , TNF α , IL2, IL4, or effector molecule GrB expressing CD8⁺ T cells (SARS-CoV-2 specific CD8⁺ T cells). SI was calculated by dividing the measured T cell subset response by the respective response in the negative control. Values above 3 are considered detectable. For patients with multiple samples, the maximal response was calculated. Scatter plot with line at median and interquartile range.

b-i Frequencies of SARS-CoV-2 specific (CD137⁺ cytokine⁺) CD8⁺ T cells (**b**) and CD137⁺ CD8⁺ T cells expressing IFN γ (**c**), TNF α (**d**), GrzB (**e**), IL2 (**f**), or IL4 (**g**) as well as bifunctional (**h**) and trifunctional (**i**) CD137⁺ CD8⁺ T cells. Bi- and trifunctional T cells were calculated by Boolean gating of production of IFN γ , TNF α , GrzB, IL2, and IL4. Negative controls were subtracted from specifically stimulated samples to exclude unspecific activation.

Statistical comparison was done with Mann-Whitney-U-test and controlled by multivariate analysis for the influence of transplantation status and age. P<0.05 was considered significant.