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Biomarker Development: All blood samples were drawn directly into PAXgene tubes (BD 

BioSciences, San Jose, CA), processed, and subjected to a previous workflow using the 

Affymetrix 3’ IVT PLUS labeling kit Array hybridization.1-3 Raw expression (.CEL) data files 

generated by the GeneTitan from Affymetrix GeneChip HT HG-U133+PM Array plates were 

processed for QC metrics using the Affymetrix Expression Console software where each sample 

that passed was used as input for normalization. Normalization was performed using a custom 

Frozen Robust Multiarray Analysis4 vector to generate a fixed set of probe level parameters based 

on a cohort of 560 CEL files previously generated from LTR.1 In addition to performing the 

standard steps of background correction, normalization, and summarization, a major advantage 

of FRMA over the traditional Robust Multiarray Analysis is that only blood samples from LTR were 

used in normalization vector creation, increasing the confidence in the values of the LTR specific 

blood transcripts expressed in these samples for our specific LT biomarker development pipeline. 

Finally, prior to model development, batch effects were corrected using ComBat.5 

 The genomic discovery and validation phases were performed in accordance to Institute 

of Medicine guidelines.6 For discovery of gene expression based biomarkers with the sample 

groups sizes available in this study, the split sample approach (70% training set, 30% testing set) 

allows for accurate estimation of phenotypic gene expression profiles while retaining a sufficiently 

large validation cohort to have confidence in the performance metrics.7 In this approach, all 

biomarker discovery steps are performed on the training set with the testing set reserved solely 

for validation of the final “locked” model. An additional consideration when splitting the samples 

is maintaining the distribution of the phenotypes and pertinent metadata variables (including 

reported gender, ethnicity, etc.) in both the training and testing cohorts. Therefore, the NU and 

CTOT-14 samples were merged and then split into the 70% training and 30% testing groups, 

based on previous discovery work in kidney transplant recipients.8,9 



 Briefly, the dataset of all probes on the GeneChip were filtered to retain the genes with 

median expression greater than 6 in 50 percent of the samples and in the top 40 th percentile of 

variance across all samples. Five independent classification algorithms (Nearest Shrunken 

Centroid,10 Partial Least Squares Discrimination Analysis,11 Support Vector Machine,12 Random 

Forest,13 Elastic Net14) were used to calculate a multivariate score for each probe in the filtered 

dataset based on metrics (unique for each algorithm) that reflect the relative contribution of a 

probe towards classification of out of bag samples. For 1000 resamplings of the training datasets, 

the score represents “the mean of the square accuracy of the models obtained among the set of 

multivariate methods that selected” the probe.9 All probes with score greater than 0.2 were 

retained for use in the next step of the pipeline, with final model generation using random forest. 

A performance threshold was selected favoring NPV over PPV (above the threshold = AR), and 

the model and threshold were then locked for validation on the 30% test cohort.  

 The locked model and threshold were also used on pre–AR and pre–non-AR samples as 

well as post-AR. As each subject had serial samples collected in the CTOT-14 cohort, a linear 

mixed effect model with random intercept was used to estimate the pre-biopsy slope for each 

phenotype to account for within patient correlation. Data first stratified by phenotypes and 

coefficients were estimated and compared via linear mixed effect model. Another linear mixed 

effect model was fit to compare the pre- and post-AR slopes. Analysis was performed using R 

version 3.5.1 (RStudio). Probes from the final locked models were then fed to Ingenuity Core 

Analysis (Qiagen, Inc., Hilden, Germany) that provides information about enriched pathways and 

allows comparison to literature data. Enriched pathways were selected based on Fisher’s exact 

test (p-value<0.05 statistically significant). 
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AR vs   Table S1: AR vs. Non-AR 59-Probe Model – Ingenuity Pathway Analysis 
a.  

 

 
 
 
 
 
 

Ingenuity Canonical Pathways 

-log(p-

value) 

-log(B-H 

p-value) Molecules 

LXR/RXR Activation 5.45 3.19 CD36,CLU,IL1R2,LYZ,MMP9 

Glucocorticoid Receptor Signaling 4.57 2.8 ADRB2,CD3G,FCGR1A,IL1R2,MMP9,NFAT5,SLPI 

Role of NFAT in Regulation of the Immune 
Response 4.6 2.8 CD3G,FCGR1A,GNA12,HLA-DQB1,NFAT5 

B Cell Development 4.34 2.69 HLA-DQB1,IGHM,PTPRC 

CD28 Signaling in T Helper Cells 4.06 2.65 CD3G,HLA-DQB1,NFAT5,PTPRC 

iCOS-iCOSL Signaling in T Helper Cells 4.21 2.65 CD3G,HLA-DQB1,NFAT5,PTPRC 

Systemic Lupus Erythematosus Signaling 4.11 2.65 CD3G,FCGR1A,IGHM,NFAT5,PTPRC 

Atherosclerosis Signaling 3.98 2.63 CD36,CLU,LYZ,MMP9 

Dendritic Cell Maturation 3.36 2.06 CD1D,FCGR1A,HLA-DQB1,HLA-DRB4 

OX40 Signaling Pathway 3.16 1.9 CD3G,HLA-DQB1,HLA-DRB4 

Protein Kinase A Signaling 3 1.79 FLNA,LEF1,NFAT5,PTPN4,PTPRC 

T Cell Receptor Signaling 2.95 1.77 CD3G,NFAT5,PTPRC 

Th1 Pathway 2.78 1.64 CD3G,HLA-DQB1,HLA-DRB4 

Inhibition of Angiogenesis by TSP1 2.71 1.6 CD36,MMP9 

Antigen Presentation Pathway 2.59 1.56 HLA-DQB1,HLA-DRB4 

Neuroinflammation Signaling Pathway 2.58 1.56 HLA-DQB1,MMP9,NFAT5,SNCA 

Th2 Pathway 2.64 1.56 CD3G,HLA-DQB1,HLA-DRB4 

Role of Macrophages, Fibroblasts and Endothelial 

Cells in Rheumatoid Arthritis 2.51 1.51 FCGR1A,IL1R2,LEF1,NFAT5 

PKCθ Signaling in T Lymphocytes 2.48 1.5 CD3G,HLA-DQB1,NFAT5 

Cdc42 Signaling 2.32 1.47 CD3G,HLA-DQB1,HLA-DRB4 

Hematopoiesis from Pluripotent Stem Cells 2.39 1.47 CD3G,IGHM 

Primary Immunodeficiency Signaling 2.38 1.47 IGHM,PTPRC 

Systemic Lupus Erythematosus In T Cell Signaling 
Pathway 2.41 1.47 CD3G,GNA12,HLA-DQB1,HLA-DRB4 

T Cell Exhaustion Signaling Pathway 2.33 1.47 HLA-DQB1,HLA-DRB4,NFAT5 

Th1 and Th2 Activation Pathway 2.36 1.47 CD3G,HLA-DQB1,HLA-DRB4 

B Cell Receptor Signaling 2.26 1.42 IGHM,NFAT5,PTPRC 

ILK Signaling 2.23 1.42 FLNA,LEF1,MMP9 

Oxidized GTP and dGTP Detoxification 2.24 1.42 DDX6 

IL-8 Signaling 2.17 1.38 DEFA1 (includes others),GNA12,MMP9 

Calcium-induced T Lymphocyte Apoptosis 2.14 1.36 CD3G,HLA-DQB1 

Osteoarthritis Pathway 2.06 1.31 IL1R2,LEF1,MMP9 

Role of Osteoblasts, Osteoclasts and 

Chondrocytes in Rheumatoid Arthritis 2.07 1.31 IL1R2,LEF1,NFAT5 

Allograft Rejection Signaling 1.92 1.2 HLA-DQB1,HLA-DRB4 

IL-4 Signaling 1.93 1.2 HLA-DQB1,NFAT5 

Phosphatidylcholine Biosynthesis I 1.87 1.17 CHPT1 

Regulation of IL-2 Expression in Activated and 
Anergic T Lymphocytes 1.88 1.17 CD3G,NFAT5 

Cardiac Hypertrophy Signaling (Enhanced) 1.82 1.14 ADRB2,GNA12,IL1R2,NFAT5 

Communication between Innate and Adaptive 
Immune Cells 1.83 1.14 HLA-DRB4,IGHM 

PD-1, PD-L1 cancer immunotherapy pathway 1.75 1.09 HLA-DQB1,HLA-DRB4 

Type I Diabetes Mellitus Signaling 1.71 1.06 CD3G,HLA-DQB1 

MSP-RON Signaling In Macrophages Pathway 1.7 1.05 HLA-DQB1,HLA-DRB4 



 
Ingenuity Toxicity Lists  -log (p-value) Molecules  

LXR/RXR Activation 5.41 LYZ,CD36,MMP9,CLU,IL1R2 

Increases Cardiac Dysfunction 3.53 ADRB2,CD36,MMP9 

Liver Necrosis/Cell Death 3.44 MMP9,DICER1,FLNA,ADM,PTPRC 

Increases Cardiac Dilation 3.43 ADRB2,MMP9 

Increases Heart Failure 3.09 ADRB2,MMP9 

Increases Renal Damage 3.06 FCGR1A,KLRB1,ADM 

Persistent Renal Ischemia-Reperfusion Injury 

(Mouse) 
2.82 LYZ,CLU 

Acute Renal Failure Panel (Rat) 2.19 CLU,ADM 

Renal Safety Biomarker Panel (PSTC) 1.94 CLU 

Cardiac Fibrosis 1.88 ADRB2,MMP9,DICER1 

Mechanism of Gene Regulation by Peroxisome 
Proliferators via PPARα 

1.84 CD36,IL1R2 

Cardiac Necrosis/Cell Death 1.67 ADRB2,DICER1,ADM 

Hepatic Fibrosis 1.54 ADRB2,MMP9,HLA-DQB1 

Renal Necrosis/Cell Death 1.52 SNCA,CLU,GNA12,NFAT5 

Increases Glomerular Injury 1.5 FCGR1A,ADM 

Genes associated with Chronic Allograft 
Nephropathy (Human) 

1.4 MMP9 

Cardiac Hypertrophy 1.39 ADRB2,MMP9,DICER1 
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